Damage-free vibrational spectroscopy of biological materials in the electron microscope
نویسندگان
چکیده
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be 'safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.
منابع مشابه
The effect of halogen atoms at propanoate anion on thermo physical, vibrational spectroscopy, chemical reactivity, biological properties of morpholinium propionate Ionic Liquid
The morpholinium cation based ionic liquids are designed to evaluate the thermophysical, chemical reactivity, and biological activity. To estimate and design the bioactive ILs, propionate and trihalopropanoate were considered under theoretical study by Density Functional Theory (DFT). To make effect of halogens atom on anion, propionate, trifluro propionate, trichloro propionate, and tribromo p...
متن کاملThe effect of halogen atoms at propanoate anion on thermo physical, vibrational spectroscopy, chemical reactivity, biological properties of morpholinium propionate Ionic Liquid
The morpholinium cation based ionic liquids are designed to evaluate the thermophysical, chemical reactivity, and biological activity. To estimate and design the bioactive ILs, propionate and trihalopropanoate were considered under theoretical study by Density Functional Theory (DFT). To make effect of halogens atom on anion, propionate, trifluro propionate, trichloro propionate, and tribromo p...
متن کاملErratum: Damage-free vibrational spectroscopy of biological materials in the electron microscope
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the mater...
متن کاملVibrational and valence aloof beam EELS: A potential tool for nondestructive characterization of nanoparticle surfaces.
In many materials systems, electron beam effects may substantially alter and destroy the structure of interest during observation. This is often true for the surface structures of catalytic nanoparticles where the functionality is associated with thin surface layers which are easily destroyed. The potential application of using aloof beam electron energy-loss spectroscopy as a non-destructive n...
متن کاملReduced Electron Exposure for Energy-Dispersive Spectroscopy using Dynamic Sampling
Analytical electron microscopy and spectroscopy of biological specimens, polymers, and other beam sensitive materials has been a challenging area due to irradiation damage. There is a pressing need to develop novel imaging and spectroscopic imaging methods that will minimize such sample damage as well as reduce the data acquisition time. The latter is useful for high-throughput analysis of mate...
متن کامل